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Abstract. Refined estimates for finite element or, more generally, Galerkin approxima- 
tions of the eigenvalues and eigenvectors of selfadjoint eigenvalue problems are presented. 
More specifically, refined results on the asymptotic behavior of the eigenvalue and eigen- 
vector errors are proved. Both simple and multiple eigenvalues are treated. 

1. Introduction. In this paper we establish some refined estimates for the ap- 
proximation of the eigenvalues and eigenvectors of selfadjoint eigenvalue problems 
by finite element or, more generally, Galerkin methods. Suppose A is an eigenvalue 
of multiplicity q of a selfadjoint problem and let M(A) denote the space of eigen- 
vectors corresponding to A. Denote by 11 IB the energy norm for the problem. 
Let {Sh}O<h be the family of finite-dimensional approximation spaces employed in 
the Galerkin method. A will be approximated from above by q of the Galerkin 
approximate eigenvalues: 

A < Ah, < < Ah,q, A - Ah,,..., Ah,q. 

Let u, with IlUlIB = 1, denote an eigenvector corresponding to A, and let uh,1,..., 

Uh,q, with lluh,kllB = 1, denote the Galerkin eigenvectors corresponding to Ah,1,..., 

Ah,q, respectively. 
It is well known that 

(1.1) Ah,k-A < C sup inf lu|-XllB, k = 1, ... ,q, 
uEM(A) XESh 

and that there is a Uk 
U|| 

= lii and that there is a Uk = Uk(h) E M(A), with llukllB = 1, such that 

(1.2) lluh,k - ukllB < C sup inf llU - XllB, k = 1, ... , q. 
uEM(A) XESI. 

In [7], [8] Chatelin proved the following refinements of (1.1) and (1.2): 

(1.3a) llu - EhUIlB = r(a) inf I|U - XIIB VU E M(A), 
| 

h ESh 

(1.3b) llUh,k - EUh,kllB = ri(b) inf llEUh,k - XIIB, k = 1, ... I , 
hxESh 
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276 I. BABU?KA AND J. E. OSBORN 

and 

(1.3c) II(Ah,k- A)/AIIB = rA) inf IIEUh,k -XII, k = 1,... q, 
hXESh 

B 

where E denotes the orthogonal projection of the energy space onto M(A) and Eh 

the orthogonal projection onto span{uh,1,... ,Uh,q}, and where (l) 
- 1 as h ) O. 

for 1 = a, b, c. 
The purpose of this paper is twofold. The first is to establish an estimate for 

Jr()- 11. We show that 

(1.4) Ir() - 11 < dr2(h), 

where rt(h) is a certain measure of the approximability property of {Sh}; for the 
definition of tj see Section 3. This is done in Section 4. 

In [3] the authors established the estimate 

(1.5) Ah,l-A =C Einf( in~f 11U_ X112 
UsEM(A\) XESh 

B 

IIUIIB=1 

which is an improvement over (1.1) and (1.3c) in the case of a multiple eigenvalue. 
[3] also contains estimates for Ah,k- A, k = 2, ... , q, and for IJUh,k - UIIB, k = 
1,...,q, which are improvements of (1.1) and (1.3c) and of (1.2) and (1.3a,b), 
respectively. The second purpose of the paper is to present a simplified proof and 
an extension of the results in [3]. This is done in Section 5. 

In Section 2 we give a precise statement of the class of eigenvalue problems 
and approximation methods we will consider. Section 3 contains some background 
information. 

The second author would like to thank Professor Hans F. Weinberger for several 
helpful discussions on the topics in this paper. 

2. Setting for the Problem. Suppose H is a real Hilbert space with inner 
product (., ) and norm 11 11, respectively, and suppose we are given two symmetric 
bilinear forms B(u, v) and D(u, v) on H x H. B(u, v) is assumed to satisfy 

(2.1) IB(u,v)I < CIJuIIIJvII Vu,v e H 

and 

(2.2) CoIIUII2 < B(u, u) Vu E H, with Co > 0. 

It follows from (2.1) and (2.2) that IlUliB = B(u,u)1/2 is equivalent to Ilull. Re- 

garding D, we assume 

(2.3) 0<D(u,u) VO1 uEH 

and that 

(2.4) lUllD = D(U 

is compact with respect to 11, i.e., from any sequence which is bounded in 11 
one can extract a subsequence which is Cauchy in 11 IID. For the remainder of 
this paper we will use B(u, v) and 11 lB as the inner product and norm on H and 
denote this space by HB. 
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We then consider the variationally formulated, selfadjoint eigenvalue problem 

(2.5) { Seek A (real) and 0 $ u E HB satisfying 
B (u, v) = AD(u, v) Vv E HB. 

Under the assumptions we have made, (2.5) has a sequence of eigenvalues 

? < A, < A2 < *.. / +Xo 

and corresponding eigenvectors 
UlU2, ...* 

which can be chosen to satisfy 

(2.6) B(ui, uj) = AiD(u2, uj) = 6ij, ij = 1,2, .... 

The eigenvalues and eigenvectors satisfy the following well-known variational prin- 
ciples: 

Ak = min B (u, u) _ B(Uk, Uk) k=12 . 
(2.7) s(UEHB D(u, u) D(Uk, Uk)' k=1,2, 

i=1 ,2B.,k-i 

(the minimum principle) 

and 

Ak= min max B(u, u) max B (u, u) k-=1,2, ... 
(2.8) VkCHB UEVk D (u, u) UEUk=span(u1. ..,Uk) D(u,u)' dim Vk=k 

(the minimum-maximum principle). 

For any Ak we let 

(2.9) M = M(Ak) = {u: u is an eigenvector of (2.5) corresponding to Ak}. 

We shall be interested in approximating the eigenpairs of (2.5) by finite element 
or, more generally, Galerkin methods. Toward this end, we suppose we are given a 
(one-parameter) family {Sh}O<h<l of finite-dimensional subspaces Sh C HB, and 
we consider the eigenvalue problem 

(2.10) { Seek Ah (real), 0 $ Uh E Sh satisfying 

B(Uh,V)=AhD(UhV) VvESh. 

The eigenpairs (Ah, Uh) of (2.10) are then viewed as approximations to the eigen- 
pairs (A, u) of (2.5). (2.10) is called the Galerkin method determined by the sub- 
spaces {Sh } for the approximation of the eigenvalues and eigenvectors of (2.5). 
We will also sometimes refer to problem (2.10) as the Galerkin approximation of 
problem (2.5). (2.10) has a sequence of eigenvalues 

O < Ahj < Ah,2 < < Ah,N, N = dimSh, 

and corresponding eigenvectors 

Uhj, Uh,2, * .* , Uh,N, 

which can be chosen to satisfy 

(2.11) B(Uh,iUh,j) = Ah,iD(Uh,iUh,j) = bij, i, j = 1,... ,N. 
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The (Ah,j, Uh,j) are referred to as the approximate eigenpairs, while (Aj, uj) are 
referred to as the exact eigenpairs of (2.5). Minimum and minimum-maximum 
principles analogous to (2.7) and (2.8) hold for problem (2.10); they are obtained 
from (2.7) and (2.8) by replacing HB by Sh and letting k = 1,... IN. We will refer 
to them by (2.7h) and (2.8h), respectively. Using (2.7) and (2.8), together with 
(2.7h) and (2.8h), we see immediately that 

(2.12) Ak < Ah,k, k = 1,.. ., N = dimSh. 

We will assume that the family {Sh} satisfies the approximability assumption 

(2.13) eu(h) = IIuII1 inf I|u-XIIB -0 as h -0, for each u E HB. 
BXESh 

It follows from (2.7), (2.8), (2.7h), (2.8h), and (2.13) that 

(2.14) Ah,k -- Ak as h -- 0, for each k. 

Finally we introduce 

Uj = Auj, 

the exact eigenvectors normalized in 11 JID, and 

Uh,j = xfKjUhj, 

the approximate eigenvectors normalized in 11 IID. 
Throughout the paper, the specific eigenfunctions satisfying (2.6) ((2.11)) will be 

denoted by uj (Uh,j). Thus the uj (Uh,j) are normalized in 11 IIB; Uj (Uh,j) denotes 
the same eigenvectors, renormalized in 11 IID When we denote an eigenpair by 
(A, u) we will not assume any particular normalization on u. C, Ci, d, and di will 
denote generic constants. 

3. Preliminary Results. In this section we present several preliminary results 
that will be used in the sequel. For further information on eigenvalue problems we 
refer the reader to [4], [8]. 

(a) An Identity Relating the Eigenvalue and Eigenvector Errors. Here we present 
an identity that relates the errors in eigenvalue and eigenvector approximation. 

LEMMA 3.1. Suppose (A, u) is an eigenpair of (2.5), suppose w is any vector 
in HB with iJWliD = 1, and let A' = B(w,w). Then 

(3.1) A' - A = |W - U11-2 Aliw - U112 

Proof. By an easy calculation, 

(3.2) 11w - UII - Aliw - U112 = IIWIB- 2B(w, u) + IIUI12 
-A AIIWII2 + 2AD(w, u) -A IIUII2. 

Now 
B(v, u) = AD(v, u) Vv E HB, 

from which we get 

(3.3) B(w, u) = AD(w, u) 

and 

(3.4) IIUI12 = B(u,u) = AD(u,u) = AIul. 
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The result follows from (3.2)-(3.4) and the relations A' = IIWIIB and 1 = IIwIID. ? 
(b) The Operators T and Th. Let 

HD = the completion of HB with respect to 11 lID. 

HD is a Hilbert space with inner product D and, since 11 IID is assumed to be 
compact with respect to 11 IIB, HB is compactly imbedded in HD. (Alternatively, 
we could have assumed HB C HD, compactly, and let D(u, v) be the inner product 
on HD.) 

From HD and HB construct the "negative space" H-B = HB, with normll11I-B. 
Then HD C H-B compactly, and for v E HB, D(u, v) has a continuous extension 
to u E HB so that D(u, v) is continuous on H-B x HB. For u E H-B, I|U|IIB = 

SUpVEHB ID(u, V) I/IIvIIB. For a complete discussion of this construction we refer to 
[5, pp. 31-39]. 

Next we introduce the operators T, Th: H-B -) HB defined by 

(3.5) Tf E HB, 
* B(Tf,v) = D(f,v) Vv E HB, 

(3.6) J ThfESh, 1 B(Thf,v) = D(f,v) Vv E Sh. 
T and Th are the solution and approximate solution operators for the "boundary 
value" problem corresponding to the eigenvalue problem (2.5). It follows immedi- 
ately from (2.1), (2.2), and the fact that D(f, v) is continuous on HB X HB that 
T and Th are bounded from H-B to HB. Since HB is c6mpactly imbedded in HD, 
and HD is compactly imbedded in H-B, T is compact from HB to HB, from HD 
to HD, and from H-B to H-B. Th is, of course, also compact on HB, HD, and 
H-B It is easily seen that T and Th are selfadjoint on HD and that T is selfadjoint 
and positive definite on HB (with respect to B(u, v)). It is immediate that T has 
eigenvalues 

p = A-' > /2 = A-' >...0 

and eigenvectors 

Uli U2i * * * 

and that Th has eigenvalues 

1h,1 = A-' > ... hN =A-,' N = dimSh, 

and eigenvectors 
Uh,1,.*, Uh,N- 

Let Ph be the orthogonal projection of HB onto Sh; then from (3.6) we see that 

Th = PhT. 

Let 

(3.7) tj(h) = II(I - Ph)TIIHD-HB = lIT - ThIIHD-HB = sup inf |ITg- XIIB 
gEHD XESh 

II9IID=l 

and 

(3.8) v(h) = II(I - Ph)TIIHB-HB = lIT - ThIIHB-HB = sup inf I|Tg- XIIB. 
gEHB XESh 

Ig9IIB=1 
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Several of the results in Sections 4 and 5 are stated in terms of the qualities of ?7 
and v. We now present some properties of 77 and v. 

LEMMA 3.2. There are positive constants Ci and C2 such that 

(3.9) Ci v(h) < t7 (h) < C2 V'Ah. 

Proof. Since IlUlID < CIuIIB Vu e HB, we have v(h) < 0r(h), which is the first 
inequality in (3.9) with Ci = C-1. Now consider the second inequality in (3.9). 
From (3.5) and (3.6) we have 

JJTf JIB < SIf I-Bi JJThf JIB < FIf 1-B 

and hence 

(3.10) IIT-ThIIH-B-HB < 2 

and from (3.8) we have 

(3.11) lIT - ThIIHB-HB= v(h). 

We now note that H-B and HB are connected by a scale of Hilbert spaces. It thus 
follows from (3.10), (3.11), and a result on interpolation of linear operators [5, pp. 
240-242] that 

t7(h) = IT - ThIIHD-HB < C21/21%/2 = C-(h) /, 

which is the second inequality in (3.9). 0 

LEMMA 3.3. We have 

(3.12) lim ?7(h) = lim v(h) = 0. 
h--+0 h-*+O 

Proof Because of Lemma 3.2 it is sufficient to show that limhO v(h) = 0. (2.13) 
implies that Ph -- I pointwise on HB (in fact, (2.13) is equivalent to this result). 
Since T: HB -- HB is compact, T{g E HB: ll9llB = 1} is relatively compact in HB, 
and limh-iO M(h) = 0 follows from the standard result that a family of operators 
that converges pointwise on a space converges uniformly on a relatively compact 
subset. El 

From Lemma 3.2 we have tj2 = O(v). It may happen that tj2 = 0(M). This is 

shown by the following example. 
Example. Let 

HB = H'(0 1), B(u,v) = f a(x)u'v'dx, 

and 

D(u, v) = 1 uv dx, 

where 0 < a < a(x) < d < oo. (HI(0, 1) is the lth-order Sobolev space and 

Ho'(0,1) = {u E H1(0,1): u(0) = u(1) = 0}.) For f E L2(0,1), u = Tf is the 
solution of 

- (a(x)u')' = f(x), 0 < x < 1, 
u (O) = u(1) = 0. 
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First suppose Sh = the space of CO piecewise linear functions with mesh size h 
that vanish at 0 and 1 and suppose a(x) is smooth. Then we easily see that r7(h) , h 
and v(h) - h, so that r72 = 0(v). Next suppose Sh = the space of CO piecewise 
quadratic functions vanishing at 0 and 1. If a(x) is smooth, we see that ?7(h) - h 
and v(h) - h2, so v72 _ V. If, on the other hand, a(x) is rough, specifically if a(x) 
is such that g E HD = L2(0, 1) implies u = Tf E H2(0, 1), but g E HB = HO (O 1) 
does not, in general, imply u E H'(0, 1) for a > 2, then tj - h and v - h, so 

?7 = o(v). 
From (2.13) we have 

11(1-Ph)UIIB = eu(h)IJUIIB --0 Vu E HB. 

The usual duality argument (cf. Aubin [1], Nitsche [10], and Oganesjan-Rukhovets 
[11]) shows that 11(I - Ph)uIID < C0j(h)11(I - Ph)uIIB and 11(I - Ph)uII- < 

Cv(h) I(I - Ph)uIIB. For the sake of completeness we include proofs of these results. 

LEMMA 3.4. We have 

(3.13a) II(I-Ph)uIID < ?1(h)II(I-Ph)UIIB Vu e HB 

and 

(3.13b) 11(I - Ph)uIIB < v(h)II(I - Ph)UIIB VU e HB. 

Proof. Since Ph is the orthogonal projection of HB onto Sh, we have 

B((I-Ph)uTg) =B((I-Ph)uTg-X) VXESh, 

from which we get 

(3.14) |B((I-Ph)u, Tg)l < II(I-PPh)UIIB inf IITg-XIIB. 
XESh 

From (3.5), the symmetry of D and B, and (3.14) we have 

II(I-Ph)uIID = sup ID((I-Ph)u,g)I = sup IB((I-Ph)u,Tg)I 
9EHD 9EHD 

II9IID=1 Ig9IID=1 

< sup inf ||Tg - XIIBII(I - Ph)IIB < tl(h)II(I - Ph)UIIB, 
gEHD XESh 

11911D=1 

which is (3.13a). Similarly, 

II(I-Ph)uII-B = sup ID((I-Ph)u, g)I 
gEHB 

11911B=l 

= sup inf ||Tg-X||B||(I-Ph)UIIB = v(h)II(I-Ph)uIIB, 
gEHB XESh 

!1911 B=1 

which is (3.13b). 0 

(c) Preliminary Eigenvector Estimates. For i = 1, 2, ... let ki be the lowest 
index of the ith distinct eigenvalue of (2.5) and suppose Ak, has multiplicity qi. Let 
E = E(Ak,) be the orthogonal projection of HB onto M(Ak,) and let Eh = Eh(Ak,) 

be the orthogonal projection of HB onto 

(3.15) Mh = Mh(Ak,) = the span of the eigenvectors of (2.10) 
corresponding to Ah,k,+j Ij = 0,... ,q*qi -1 
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LEMMA 3.5. There is a constant Ci such that 

(3.16a) |u|-Eh(Aki)UIIB <0Ci|(I-Ph)UIIB Vu E M(Aki), 

(3.16b) |u - Eh(Ak.)uIID < Cill(I - Ph)ulID Vu E M(Aki), 

and 

(3.16c) |u - Eh(Aki)UI|-B < Cill(I - Ph)uII-B Vu E M(Aki). 

Proof Suppose the spaces HB, HD, and H-B, the bilinear forms B and D, and 

the operators T, Th, E, and Eh have been complexified in the usual manner. Let 

Fki be a circle in the complex plane centered at Yuki = A-' and enclosing no other 

eigenvalues of T. Then for h sufficiently small, Ph,ki = A-' Phki+qi-= 

Ah-'q il but no other eigenvalues of Th are contained in Fki, and 

(3.17a) E(Ak2) = jL1j(z-T)-dz 

and 

(3.17b) Eh(Aki) = - j (z - Th)1 dz. 

These are the usual formulas for the spectral projections associated with T and /k, 

and Th and 1h,k,, / * * i lh,k,+qi-11 respectively (cf. [9, Section X1.9]). 
Consider now the proof of (3.16a). Using (3.17) we have 

|u - Eh(Aki)UIIB = II[E(Aki) - Eh(Aki,)]UIIB 

1 
|| 27r T)-' - z (Z Th) ']udz| 

B 

21 lr(z -Th) -'(T -Th) (z- T) -'udz 
(3.18) = 1 f(Z-Thy1(T-Th) u dz 

2ir Iki Z-/Ik B 

< - [2ir rad(Fk,)] sup II(z-Th)Y1IIHB-*B II (T- Th)UB 
2ir zErki rad(]Fki) 

O<h 

=/2ki SUp II(Z-Th)rIIHB-HBII(I-Ph)UIIB Vu E M(Aki). 
ZErki 

O<h 

In the last inequality we used the relation (T - Th)U = (I - Ph)TU = /1ki (I - Ph)U. 
Now lIT - ThIIHBHB -O 0 implies 

Ci/=-ki SUp II(z-Th)1IIHBH-HB <00 
zErki 

O<h 

so we have established (3.16a). 

Now consider the proof of (3.16b). The above analysis is relative to the space 

HB (the integrals in (3.17) converge in the operator norm on HB and 

IIT - ThIIH-HB -O ). Since T and Th can also be considered on HD and 
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lIT - ThIIHD-HD -_ O, we can apply the same argument in HD. Note that the 
formulas (3.17) will now define projections on HD which are extensions to HD of 
E and Eh. We thus obtain (cf. (3.18)) 

I|u-Eh(Aki)UIID <Yki SUp II(z-Th)Y IIHD-HD 1( -Ph)uIID Vu E M(Aki), 
ZErki 

h>O 

which is (3.16b). 
The proof of (3.16c) is similar. E 
Remark 3.1. It is essential in Lemma 3.5 that h is sufficiently small, meaning 

small in comparison with the gap between Aki and Aki-1, Aki+1. If this gap is small, 
then it can happen that the approximate eigenfunction Uh,ki associated with Ah,ki 

could be close to Uki-1 or Uki+1. 

Lemma 3.5 is an eigenvector estimate since it provides an estimate for 

u(an exact eigenvector) - Ehu(a linear combination of approximate eigenvectors). 

We note that (2.13) and (3.16) imply that Eh(Aki): M(Ak,) -' Mh(Aki) is one-to- 
one and onto for h sufficiently small. 

We next prove a refinement of (3.16a) due to Chatelin [7], [8]. Inequality (3.16a) 
shows that 

|u - Eh(Ak,)UIIB = 0(1) Vu E M(Ak,). 
I1U - PhUIIB 

Chatelin showed that 

lu - Eh(Aki)ullB 1 as h - 0 (see (1.3a)); 
llU - PhUllB 

her argument, in fact, establishes 

LEMMA 3.6 (CHATELIN). There is a constant di such that 

(3.19) 1 < lu - Eh(Ak)ullB < 1 + div(h) Vu E M(Aki), 
lU - PhUllB 

where v(h) is defined in (3.8). 

Proof. For the sake of completeness, and to establish the form of the bound in 
the second inequality in (3.19), we present a proof of this result. 

Let Th = PhTPh = ThPh. Note that Th and Th have the same nonzero eigen- 
values, that Eh(Aki) commutes with Th, and that Th is selfadjoint with respect to 
B. For uEM(Ak,), 

(Th -/h,k,)PhU = PhT(Ph - I)U + (Yki - /h,k,)PhU 

and hence, since Eh(Ak,) commutes with Th, 

(3.20) (Th - Ph,k,) (I - Eh(Ak,))PhU = (I - Eh(Ak,))PhT(Ph - I)u 

+ (/ki - Ph,ki) (I - Eh(Aki))PhU. 

Let Q be the orthogonal projection of HB onto Y(Th), the null space of Th. Then, 
any z E ?4(I - Eh(Ak,)), the range of I - Eh(Aki), can be written as 

N 
z = E B(z, Uhl)Uhl + QZ. 

1=1 
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Here we have used the orthogonal decomposition 

HB = gf (h) (D I(Th) = -IV )@(Th) 

- span{Uh,l,.. ,UhN} eA'(Th) 

- span{uh,1,. . . ,UhN} I -'V(Th) 

Thus, 

N 

(Th -Ph,ki)Z B(z,Uh,l)(Ih,l - Ph,ki)Uh,l -Ph,kiQZ, 
1=1 

lki,...,ki+qi-1 

and hence 

II((Th -h,ki )ZIB 

N 

- Ei IB(zuhl) /Ph,t -/h,ki + Ilh,ki IIQZIIB 
1=1 

lki,...,ki+qi-1 

> min{|uh~J- Uh,ki 12, j = N,. , N j 7& ki.... *I* ki + qi - 1 | Phski 121 

(3.21) N 
x Z IB(zuh,0)1 + IIQzIIB1 

Ilki,...,ki+qi-1 

IminflPh,ki-l -Ph,ki| 1|1h,ki+1 -Ph,ki| IPh,ki| }Z|B, i2 
1 min{fPh,k2 - Uh,ki 12, IUh,k1 I2}IIzII B = 1. 

Since Ph,j -- 
Yj (cf. (2.14)) for each j as h - 0, 

| i{l#h,ki-1 - h,ki J lh,ki+1 Ph,ki I lh,ki |} i>2 

minflPhk2 - Ph,k1 12, ISh,k1 12}, i = 1, 

{ min{I/kik1 - /ki 12, I-ki+1 - /ki 12, I-ki 12}, i > 2, 

min{fAuk2 -Pk1 12, I-k 12}, i= 1, 

=6? ash -0, 

from (3.21) we get 

(3.22) II(Th-Ph,ki)ZIIB > 5iIIZIIB Vz E (I -Eh(ki)) and 
V small h, 

where &i > 0 depends only on the gap between Ptk, and Pki~ -1, Pki +1* Combining 
(3.20), (3.22), and the fact that I - Eh(Aki) and Ph are orthogonal projections, we 
have 

11(I - Eh(Ak,))PhUIIB 

< 6i|(I - Eh(Aki))PhT(Ph - I)U + (Pki -Ph,ki)(I - Eh(Aki))PhUIIB 

< z6-{IIT(Ph - I)2UIIB + I8ki - Ph,ki II(I - Eh(Aki))PhUIIB}, 

from which we get 

(3.23) 11(I - Eh(Aki))PhUIIB < diIIT(Ph - I) IIHB-HB (Ph - I)UIIB 
= di I| (Ph - I)TI| HB-HB II (Ph - I)U 1I B 
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In the last equality we used the fact that (Ph - I) and T are selfadjoint and that 
the norm of an operator and its adjoint are equal. 

(3.23) implies 

111(I - Eh(Aki)Ph)UIIB - 11(I - Ph)UIIBI| ? 1(I - Eh(Akj))PhUIIB 

< dil |(Ph - I)TIIHBHB II (Ph - I)UIIB, 

and hence 

(3.24) II(I - Eh(Ak;)Ph)uIIB -_1 < diII(Ph-I)TIIHB-HB. 
II(Ph - I)UIIB 

We easily see that 

||(I - Ph)uIIB < ||(I - Eh(Aki))UIIB < ||(I - Eh(Akj)Ph)UIIB, 

and thus 

(3.25) 1 1(I - Eh(Aki))UIIB < (I - Eh(Aki)Ph)uIIB 
II(Ph-I)UIIB II (I-Ph)uIIB 

Combining (3.24) and (3.25), we have 

0 <11(I - Eh(Aki))UIIB < 11(I - Eh(Aki)Ph)UIIB 

II(Ph - I)UIIB II(Ph - I)UIIB 

< diIl(Ph - I)TIIHBHB Vu E M(Aki). 

Recalling that II(Ph - I)TIIHB-HB = v(h), we obtain the desired result. O 
Remark 3.2. (3.19) should be compared with (4.20), which provides a stronger 

estimate for certain special u's in M(Aki). 
Lemmas 3.5 and 3.6 show that starting from any exact eigenvector u we can 

construct Eh(Aki)u, a linear combination of approximate eigenvectors that is close 
to u. One can also start with an approximate eigenvector and construct a close 
exact eigenvector. We present another result of Chatelin [7], [8]; see (1.3b). 

LEMMA 3.7 (CHATELIN). There is a constant di such that 

(3.26) 1 < IlUhj - E(Akj)UhjIIB < 1+div(h), j = ki,... , ki+qi-1. 
IIPhE(Aki)uh,j - E(Akj)uh,311B- 

Proof. Observing that 

E(Aki) - Eh(Aki)Ph = (E(Aki) - Eh(Aki))Ph + E(Aki)(I - Ph), 

we obtain 

IIE(Aki) - Eh(Ak,)PhIIHB-HB < IIE(Aki) - Eh(Aki)IIHB-HB 

+ IIE(Aki) (I - 
Ph) IIHB-HB. 

We easily see that 

IIE(Aki)(I - Ph)IIHB-HB = 11(I - Ph)E(Akj)IIHB-HB 

= sup II(I-Ph)E(Aki)UIIB 
UEHB 

||U|| B=l 

= Aki SUp II(I-Ph)TE(Akj)UIIB <Akv(h), 
UEHB 

||U||B=1 
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and by a slight modification of estimate (3.18) we have 

IIE(Aki) - Eh(Ak)|IIHB-HB < Cv(h). 

Thus, 

(3.27) IIE(Aki) - Eh(Aki)PhIIHB-HB < Cv(h). 

Next note that 

{I - [Eh(kPh -E(Aki)]}(Uh,j - E(Ak)Uh,j) = [Eh(Aki)Ph - I]E(Aki)Uh,j. 

Hence, using (3.24) and (3.27), we have 

IhUh,3 - E(Aki)Uh,j JIB < |({I - [Eh(Aki)Ph - E(Aki})]} IIHB-HB 

x II[Eh(Aki)Ph - I]E(Ak )Uh,j11B 

< ||[Eh(Aki)Ph-I]E(Ak )Uh,jIIB 
1 - Eh (Akj)Ph -E(Akj)IIHB-HB 

< (1 + div)II(Ph - I)E(Akj)Uhj31B 
1-C' C 

which implies the second inequality in (3.26). The first is immediate. 0 

(d) Relation Between Eigenvector Error in 1h JIB, HI llD, and 1H II-B. In Subsection 
3.(b) we noted that ||(I - Ph)uIID < rq(h)JJ(I - Ph)uIIB and ||(I - Ph)uIIB < 

v(h)ll(I-Ph)uIhB* In this subsection we establish similar results for the eigenvector 
error. 

For i = 1, 2, ... and j = ki,..., ki + qi-1, let Ujh E M(Aki) satisfy Eh(Aki)Ujh= 
Uhj. We know from the discussion in Subsection 3.(c) that ujh exists and is unique 

for h small. From (3.13a) and (3.16b) we have 

|Ujh - Uhi hjD = ||Uj - Eh(Ak)Ujh||D < Ciq(h) hI (I - Ph)Ujhl|B 

< Ciq (h) ||Ujh - Uh,j 11 B. 
or 

(3.28a) IIuffhu- Uh: 1D< Ci 77(h). 
J~h~ - Uh,j JIB 

It follows immediately (by scaling) that 

Ih.- Uh ,jIhD 
(3.28b) Iu - < Cihj(h) 

where 0 E M(Akj) satisfies Eh(Ak,)U4 = Uh,j. (Recall that IIUj,hJJD = 1 and 

IIUj,hJJB = 1.) Similarly, from (3.13b) and (3.16c) we get 

(3.29a) IIUj Uh,jII-B < C(h) 
IJUjh Uh,jIJIB- 

and 

(3.29b) IIUj Uh<ill-B ?C v(h). 
HO~ Uh,jiiB 
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By Lemma 3.1 we know that 

Ahj - Aki = |IU - Uh,jIB - Aki IIU - Uhj lD 

(0 IU -Uh,j IIB {1 -ki 1U - I Uh j } Vu E M(Aki)- 

As u varies over M(Aki) it is clear from (3.30) that IJu - uh,jIDI/IIU - Uh,jIIB i 
minimized for that U0 that minimizes I|u - Uh,j 11, namely for uo = E(AkJUh,j. 
Thus we have 

(3.31a) JIE(Akj)ih,3 Uh,jIIBD < II UhjIIB < Ci (h). 
JjE(AkJ-fhj j-U-h j||B ||1Ujh - Uh j||B 

We, of course, also get 

(3.31b) IIE(Ak,)Uh,j - Uhi3' D < Ci(h) 
IIE(Akj)uh,j - Uh~jIIB 

Estimates (3.31) are similar to (3.28), but involve a different pairing of approximate 
and exact eigenvectors. 

Remark 3.3. Pierce and Varga [12] proved eigenvector estimates in 11 IID, and 
Bramble and Osborn [6] established them in 11 Il-B. 

4. Precise Asymptotic Estimates for the Eigenvalue and Eigenvector 
Error. In this section we use the notation introduced in Subsection 3.(c), i.e., we 
let ki be the lowest index of the ith distinct eigenvalue of (2.5) and assume Ak, has 
multiplicity qi. 

(a) The Eigenvalue Error. For i = 1,2,. .. and j = ki,..., ki + qi - 1 fixed, 
Chatelin [7], [8] has shown that 

(4.1) (Ahj 
- 

Ak))/Ak, -+ 1 as h -+ 0 (cf. (1.3c)). 
11 (I - Ph)E(Aki)uh,jII/IEAk)u IIC 

We now prove a refinement of (4.1) (cf. (1.3c) and (1.4)). 

THEOREM 4.1. For i = 1, 2, ... there is a constant di such that 

(4.2) 1 - (Ah, - Akj/Ak, -1 <di 2(h), 

j = ki, . .. , ki + qi - 1, where rj(h) is defined in (3.7). 

Proof. Let u = E(Aki)Uh,j. We have 

(ki -Ph,j)B(U, Uh,j) = B(Tu, Uhj) - B(u, Thuh,j) 

= B(u, (T - Th)Uhj) = B(T(I - Ph)U, Uh,j) 

(4.3) = B(T(I - Ph)u, u) + B(T(I - Ph)U, Uh,j - u) 

= B(T(I -Ph)2U, u) + B(T(I - Ph)U, Uh,j - u) 

= /kikB((I - Ph)U, (I - Ph)u) + D((I - Ph)UUhj- u). 

Using the fact that B(u,Uh,j) = B(uE(Akj)Uh, ) = IIUII2, (4.3) can be written as 

h,3k, Ii||U||2B = li11(I - Ph)UI2I + D((I - Ph)U, Uh,j - u). 
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Dividing by 11(I - Ph)uI12I, multiplying by Ahj, and subtracting 1 from both sides, 
we find 

(Ahj - Aki)/Aki 1 Ahj- Aki + A D((I - Ph)U, Uh,j - U) 

11(1 - Ph)uIIB/IluIIB B Aki 11( -Ph)uIIB 

From (4.1) or the standard, well-known results for eigenvalue approximation we 
have 

Ah, 
- 

Ak, < di S II(I-Ph)uIIB2 
Aki UEM(Aki) 

IIUIIB=1 

(4.5) 2 

= di \-A, sup II(I-Ph)Tu|IB 
UEM(Aki) 

IIUIID=1 

< d,72 (h), j = ki, .. ., ki +q q- 1, 

from (3.13a) we have 

(4.6) I( - Ph)UIID < t7(h)/I(I - Ph)UIIB, 

and from (3.26) and (3.31b) we have 

(47) IIUhj - U/ID = |IUh - E(Aki)UhjIID 

< dir(h)IlUhj - E(Akj)uhsjIIB = di(h)II(I - Ph)UIIB. 

Combining (4.4)-(4.7), we obtain 

(Ah, - Akj)/Ak, - 1 < d72(h) + AhjID((I - Ph)U, Uh,j -U 

- P(I-ph)U/12 //U/J2 ||(I -ph)U|12 

< d q2 + AhJII(I - Ph)uIIDIIuh,j - < di2, 

the desired result. 0 

Remark 4.1. Formula (4.4) is due to Chatelin [7], [8] and is used by her to prove 
(4.1). Using eigenvector estimates in 11 IIB ((3.26)), one can prove 

- (Ah,3 - Aki)/Ak, < div(h). 
(I (S Ph)E(uk )Uh 7B///IIE(Aki)Uhj - 1 _ 

Inequality (4.2), which was proved using eigenvector estimates in 11 . IID ((3.31b) 

together with (3.26)), is an improvement over this result since, as we saw in Sub- 

section 3.(b), 2 may be of higher order than v. 

Theorem 4.1 relates the eigenvalue error (AhJ - Aki)/Aki to 11(I- 

with u = E(Aki)Uh,j. We now prove a result that relates the eigenvalue error to 

|(I- Ph)uI12I/I|uI2I, where u E M(Aki) and Eh(Aki)U = Uh,j, i.e., u - uh as 

defined in Subsection 3.(d). 

THEOREM 4.2. For i = 1, 2,... there is a constant di such that 

(4.8) (Ak,3- Ak,)/Ak, -1 < di?2(h), j = k, ki + qi- 

where u E M(Aki) satisfies Eh(Aki)U = Uh,j. 
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Proof. With u E M(Aki) satisfying Eh(Aki)U = Uhj, we have 

(ki - Ph,j)B(U, Uh,j) = B(Tu, Uhj) - B(u, ThUh,j) 
= B(T(I - Ph)u, u) + B(T(I - Ph)U, Uh,3 -u) 

= /k, 11(1-Ph)UII2 + B(T(I - Ph)U, Uh,j -u), 

from which we get, as above, 

(Ah, -Aki)/Ak1 Ah,3- Aki D((I-Ph)U, Uh,j -u) 

k. 11(I - Ph)UII2/IIEh(Akj)UII2 Aki +|AhJ II(I-Ph)uI2I 

It follows from (3.13a) and (3.16b) that 

(4.10) IIUhj - UIID < dirII(I - Ph)uIIB. 

Combining (4.5), (4.6), (4.9), and (4.10), we obtain 

(Ahj 
- Aki)/Ak, 1 ? dir,2 (h), 

1 (I _ Ph)UI12I/IIEh(Aki )UI12 
from which we get 

(4.11) (Ahj - Aki)/Aki IUIB <d 2(h) IUIB 
1I (I - Ph)UII2/IIuI12 IIEh(Ak )UII2 - IIEh(Ak,)uIIV 

Since u = (u - Eh(Aki)U) + Eh(Aki)U is an orthogonal decomposition in HB, we 
have 

IIUII = Iju - Eh(Aki )UII2 + IIEh(Ak, )UI2I 

and hence 

(4.12) IIUIIB - 1 + Ilu - Eh(Aki)uI 
gEh (Aki )UI12B IIEh (Aki )UI12B 

Using (3.16a) and (2.13) we see that 

(4.13) I|u - Eh(Akj)UII| B<Ce2(h) ? Cr2(h). 
IIEh(Aki)uII'B - 

Combining (4.11), (4.12), and (4.13), we get the desired result. 0 
(b) The Eigenvector Error. Let i = 1, 2,... and let j = ki,... , ki + qi - 1 be 

fixed, and consider Uh,j and E(Ak,)Uhsj (recall that IIuhjlID = 1). We showed in 
Subsection 3.(d) (see (3.31a)) that 

(4.14) IIE(Akj)Uh,j - UhjjIID < dir1(h)IIE(Ak)Uh,j - UhqjjIIB 

From Lemma 3.1 we have 

(4.15) Ahj - Aki = IIE(Ak,)Eih-j - UhjIIB - Aki IIE(Ak)iUhsj - UhijlID 

Combining (4.14) and (4.15), we obtain 

Ahj 
- 

Aki > IIE(Aki)gh,j 
- UhjIIB(l -di(h)), 

which implies 

(4.16) ~IIE(Akj)~h,3 - ~UhqjI 11 Ah,3 - Ak, (4.16) -- Ph<)E(2j-UhjIIB 
< -hj-II - 

II(I -Ph)E(Akj)UfhqjI| 11 ||1(I -Ph)E(Aki)Ufhj 112 (1 -di?72 
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Since Uh,j = E(Aki)Uh,j + (Uhj - E(Ak,)Uh,j) is an orthogonal decomposition in 

HD, we have 

1 = IIE(Akj)UihjIID + IIUhi - E(AkiYUhjII 
From this, (3.26), and (4.14) we get 

1 < IIE(Ak )UfhjII D + dir7 II(Ph-I)E(Akj)Uhj IIB 

(4.17) - IIE(Akj)Uh,jII (1 + dir74). 

Aki 

Now, combining (4.2), (4.16), and (4.17), we have 

IIE(Aki)ghj - UhjIIB 
11 (I - Ph)E(AkjiUhj IIB 

< (Ah~j- Aki)/Aki _ X 1 + di?7 
/ 

II| (I -Ph)E(Akj Uh,j 112 /||E(Aki )-hs 112 1 -di?72 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __1/ 21 / 

?{(1+ di 2) (1 + j') } / < [1 + di 2]1/2 < 1 + di q2(h). 

We summarize this (cf. (1.3b) and (1.4)) in 

THEOREM 4.3. For i 1, 2, ... there is a constant di such that 

(4.18) 1 < IIE(AkI)Uhj )-Uh JIIB < 1 + dir72 (h), j = kil... I ki + qj - 1. 
II (I -Ph)E(Akj)~hj II B- 

In (4.18), Uhj can be replaced by Uhj. 

Remark 4.2. The result (4.18) is stronger than (3.26) since 2 may be of higher 
order than v. 

Next consider Uhj and Uih (recall that E e M(Aki) satisfies Eh(Akj)Uj = Uh,j). 

We know (see (3.28a)) that 

-|Ujh 
- 

Uhj lID < dir(h)II|Uj - Uh,jIIB. 

This, together with Lemma 3.1, yields 

Ah Ak = IUIjh - Uhj IIB - Aki U3jh - Uhj lID 

?>IUj - | UhjII2B(1 -di ), 

which implies 

- Ujh-Uhj 112B Ahj - Aki 

(4.19) ||IP)jiB BlIPhU il(1-i 
(Ahj - Ak,)/Ak | 

Finally, combining (4.8) and (4.19), we have 

<IJj 
- uh,j IIB /1 + d,7)<l/2 dq 1 III- Ph )jh <IIB 

d ) - 1+d 
di2. 

This result (cf. (1.3a) and (1.4)) and the related result (3.19) are summarized in 
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THEOREM 4.4. For i = 1, 2,. .. there is a constant di such that 

(4.20) 1<IIUjh - 
U-h jIIB _ Iuj' - Eh(Ak )UhIIB?1+dr() 

- UII(-P-h)jII B - 110-E(1-Ph) ffhJB 

j = kil .. ., ki + qi - 1. 

The inequalities (4.20) remain valid if Uh,j is replaced by Uhj and U4 by u. There 
is a constant di such that 

(4.21) 1 < Ilu - Eh(Aki)uIIB < 1 + div(h) for all u E M(Ak,). 
II (u -Ph)uIIB 

Remark 4.3. We have restated (3.19) in (4.21) because it is related to (4.20) and 
it is the strongest known result of its specific type. It should be noted that (4.21) is 
true for all u E M(Aki), whereas (4.20) is valid only for u = U4 j = ki,... , ki+qi-1. 
However, for these u's, (4.20) is stronger than (4.21). 

Remark 4.4. The eigenvector estimates (4.18) and (4.20) were obtained from the 
eigenvalue estimates (4.2) and (4.8), respectively, via Lemma 3.1, which provides 
an estimate for the eigenvector error in terms of the eigenvalue error. Estimates 
for eigenvector error in terms of eigenvalue error can be found in Weinberger [13]. 

Remark 4.5. See [2], [4] for a numerical study of the reliability of the results of this 
section-which are of an asymptotic nature-as a guide to practical computations, 
which often take place in the preasymptotic phase. 

5. An Additional Result for Multiple Eigenvalues. Estimate (1.3c) im- 
plies that 

infXesh IIE(Aki)Uhki 
- 

XII2 
Ah,ki - Aki < C IE(Akh)uh kII B 

and estimate (4.8) shows that 

Ah,ki - Aki < C inf IJU -X112I/IIUII1, 
XESh 

B B 

where u E M(Aki) satisfies Eh(Aki) = Uh,ki. In [3], Babuska and Osborn proved 
the stronger result (cf. (1.5)) 

Ah~ki- Ak < C inf inf IIU-_X112 
UEM( Aki) XESh 

IIUIIB=1 

(as well as similar estimates for Ahj - Aki, j = ki + 1, ...,ki + qi - 1, and for 
the eigenvector errors), which shows that Ah,ki - Aki, the error in the approximate 
eigenvalue closest to Ak,, is governed by the approximability of the exact eigenvector 
corresponding to Aki that can be best approximated by Sh. In this section we give 
a simplified proof of the results of [3], which in addition provides information on 
C (the results in [3] only established that C is a constant), and we estimate the 
eigenvector error in 11 [|D and || I l|-B. 

As above, for i = 1, 2,... suppose ki is the lowest index of the ith distinct 
eigenvalue of (2.5) and let qi be its multiplicity, i.e., suppose 

\kjj+qjj-1 = Akj-1 < Ak, = Akj+1 = ... = Ak,+q,-1 < Aki+qi = Aki+1. 
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Let 
Ei, j (h) = inf inf IIU -X1B 

UEM(A~ki) XESh 

IIUIIB=1 
(5.1) B(uuh,ki)=...=B(uUhki+j-2)=O 

inf(Ak) EU (h), j = 1, ... I,qi, 

IIUIIB=l 
B(uuhk )=...=B(uEuhkh +j-2)=O 

where M(Aki) is defined in (2.9). The restrictions 

B(u,uh,ki) = .= B(uUh,ki+j-2) = 0 

are considered vacuous if j = 1. We note that they are equivalent to 

B(u,E(Aki)Uh,l) =O, I .= kI, ki +i-2, 

and to 

B(Eh (Aki)U, Uh,l) = 0, I = ki,. . , ki +j -2. 

THEOREM 5.1 (cf. (1.5)). For i = 1,2,... there is a function Ci(h) and a 
constant Ci, with 

(5.2) Ci(h) < 1 + div(h), di = constant, 

such that 

(5.3) (Ah,ki+j-1 - Aki)/Ak, ? C 2(h)ej(h), j = 1,... 

and such that the eigenvectors U1,U2,... of (2.5) can be chosen so that (2.6) is 
satisfied and such that 

(5.4) IIUh,k,+j-1 -Uki+j.1 IB < Ci(h)Ei,j(h), j = 1, ... ,qi, 

(5.5a) IIUh,k,+j-1 -Uk,+j-1IID < Ciq(h)Ei,j(h), j = 1,... ,qi, 

and 

(5.5b) IIUh,ki+j-1 - Uki+j-1 Il-B < Civ(h)Ei,j(h), j = 1, ... . qi, 

where rj(h) and v(h) are defined in (3.7) and (3.8). 

Proof. Let i and j, with i = 1,2,... and j = 1,...,qi, be fixed. Note 
that Eu(h) < Aki(h) for all u E M(Ak,) and Esj(h) < Akiv(h), j = 1,... ,qi. 
Let u E M(Ak,) with B(u, Uh,k,) = = B(u, Uh,k,+j-2) = 0 and I|UIiB = 1. 

Now apply (2.7h) and Lemma 3.1 with (A,u) = (Ak,,u/IIEh(Akj)uIID) and w = 

Eh(Ak,)u/IlEh(Ak,)UIID. Since 

B(Eh(Aki)UUh,l) = , 1 = 1,-... ,- 1, 

by the orthogonality of the approximate eigenvectors, and 

B(Eh(Akj)UUh,l) = B(u,Uh,l) = 0, I = ki,*..,ki + j - 2, 

by the assumption on u, we have 
/ Eh (Aki)U Eh (Ak, )U \ 

Ah,k,+j-1 - Aki < B t AEh(AkjU Eh(ki)U Aki 
\JIEh(Akj)uIID' IIEh(Akj)uIID 

(5.6) IIEh(Ak,)u _ U112 - Ak, IIEh (Akju U- 112I ( * ) II~~~~~~~JEh(Ak. Dul 
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From (3.19) we have 

(5.7) IIEh(Akj)u - UiB < (1 + dv)Iju - PhUIIB. 

From (3.13) and (3.16b) we see that 

IIIEh(Akj)UIID -Ak 1/I = IIIEh(Akj)UIID - IIUIIDI 

< IIEh(Ak)U - UIID < dju - PhUIID 

< dIllu - PhUIIB = d(h)Eu(h) 

which shows that 

1 1 ~dnu(h) 12 
)12 

< 1 
(5.8) Aki IIEh (Aki [D +IEh (Ak )UILDJ 

< 1 + drjEu(h) < 1 + drtv. 

Combining (5.6)-(5.8), we get 

(Ah,ki+j-1 - Aki)/Aki < (1 + dv)2(1 + div)I1u -PhUII 

< (1 + d>)jju - hU112B 

Now since (5.9) holds for all u E M(Aki) with B(u, Uhl) = 0, = ki,... , ki+j-2, 
and IIUIiB = 1, we have 

(Ah,ki+j-1 - Aki)/Aki 

( 2 

< (1 + dv(h)) inf inf I|u-X II|B 

B(UUhki)=--...=B(uuhxki+j-2)=O 

= (1 + div(h))EQj(h), 

which is (5.3) with Ci(h) = l +di v(h). Thus (5.2) and (5.3) have both been proved. 
Remark 5.1. The minimum principle (2.7h) and Lemma 3.1 lead to a particularly 

simple proof of a result slightly weaker than (5.3) for the case i = j = 1. It follows 
immediately from these two results that 

Ahj - Al < B (PhU - PhU -A 
( |IPh uI - DI IPhu ID -A1 

| IIPM U-U 
uII 

B A< I IPh - U I - U 
< Vu E M(Al), 

liPhuiW2 - IIphUII2 
and hence 

(Ahl - A1)/A1 < inf IIP uI < C(h),(h) 
-uEM(Ai,) A 2~uI~ 

IIUIIB=1 

where Ci(h) -- 1. 
Now consider (5.4) and (5.5). Let i = 1,2,... and j = 1,...,qi be fixed. Let 

U/ ki+j1 E M(Aki,) satisfy Eh(Aki )u'.+ = Uh,ki+j-1 (U +j1 = Uh h~~ki~~j-l ki+ 1 ki~~~~~~j-1 ~ ki+j-1' 
where Uk +h__ was introduced in Subsection 3.(d)). Applying Lemma 3.1 with 

(A, u) Ak, ki+: l) and w Uh,ki+j-1 
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we get 

U 
~~~2 

Ahki+j1 - Ak, 1 Uhki+j-l 
_ ki+j-__l_ 

(5.10) Ah~k jIIUhkj+j-lIID IIUh,ki+j-lllD B (5.10) ~~~~~~~~~~~~~~~/ 2 

-Ak Uh,ki+j-1 Uki+j-1 

- i |Uh ki+j-1IID I|Uh ki+j-1||D D' 

From (3.28b) we have 

(5.11) HIU/ +j-_ Uh,ki+j-1IID < Ci7(h)IIuk.+pi- Uh,ki+j-1IIB. 

(5.10) and (5.11) yield 

Ahkj+j-1 - Ak1 > [ 1 - AC (h) IIUh,ki+j-1 -Uk+-l - IIUh,ki+j-lIID 

which, together with (2.11), (2.12), and (5.3), yields 

IIUk,+/ 1- Uh k,+j-1IJIB < (Ah,ki+j-1 - Ai)/ 
| ki - -h j+j - -1 A 1/2 [1 -Aki 

C2 72 ] 1/2 

(5.12) A 1k/2TCi(h) 1/ 2 
E,j (h) 

A-1/2 [1 -Aki C2 ,2]1/2 

< Ci((h)5.)ij(h)/ j= Ih qi 

where, because of (5.2), Ci(h) < 1 + di v(h). (5.12) shows that the u' satisfy 
estimates (5.4). The inequality (5.12), together with (3.28b) and (3.29b), shows 
that the ulk +j- satisfy estimates (5.5). They will not in general, however, be 
orthonormal with respect to B, so that (2.6) may not be satisfied. 

It remains to modify the u _ i.e., replace uki+j-i by Uki+jl, in such a 
way that (2.6) and (5.4) and (5.5) hold. We proceed by induction on j. Let j = 1. 
If we define Uki = Uk/i IUk IIB, we have IIUkIIB = 1, so that (2.6) is satisfied. From 
(5.12) we have 

IIIUki+j1IIB -11 = 1[1 + IIUki+j-1 - Uh,ki+j-1IB] / -i 

(5.13) IIUk,+3- Uh k,+j-1II12 (5.13) ~~~~< ||ki+j-l Uhk~ B < CVEi j, j I 
,... qi, 

- ~~~2 
and hence 

IIUk, - Uhk JIIB < IIUki - UkI JIB + IIUk, -Uhk JIIB 

< IIlukIIB - B1 + iiUcj - Uhk JIIB 

< C~vEisl + Ci (h),qsisj < Ci (h)Eislj(h), 

where ?i(h) < 1 + di v(h), which is (5.4) for j = 1. Using (3.9), (5.13), and the fact 
that the u'kiji satisfy (5.5a), we get 

IIUk, - Uh,kiI|D < IIUk -UkI JID + 
IIUkj 

- Uh,ki ID 

= A I/ 2I1UiJIB - i1 + IIUkj - Uh,ki|ID 

< CvEi, 1 + Crsi 1 < Ciqr(h) Ei (h), 

which is (5.5a) for j = 1. A similar estimate establishes (5.5b) for j = 1. 
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Next suppose j = 2. Let u". = U -,uk,)uk,. Using (5.4) for j 1, 
(5.5b) for j = 1, (5.12), and the facts that (5.5b) holds for the uk and that 

Ej <? i,2, we have 

I(uki+l , Uki ) I < IB(u,+, - Uh,ki+l, Uki ) I 

+IB(Uh,ki+1 -Uk.i+ I, Uki -Uh,ki)I 

+ IB(.u'i+l, Uki - Uh,ki)I 

= Aki ID(u +l - Uhki+l Ukj)I 

+I B(uh,ki+1 -Uki+1, Uki -Uh,ki)I 

+ Ak+1I D(ui+l Uki - Uh,ki) I 

(5.14) < Ak.IIUki+l - Uh,ki+l II-BIIUkiJIB 
+ I|Uh,kj+1 - Uki+lIIBIIUki - Uh,kiJIB 

+ Akj+1 IIUki+1 lB IIUki - Uhki 11-B 

< Aki IUki+1 - Uhki+111-B 

+ IIUhki+1 - Uk,+1IIBIIUki - UhkilIB 
+ Aki (1 + IIUki+1 - Uhki+1 IB) IIUk - Uhki I-B 

? CVEi,2 + Ci(h)Ei,2Ci(h)Eisj + CvCi(h)Eii 

? Cv(h)Ei,2(h), 

and hence 

(5.15) iiU i + 1 = IB(Uk +1,Ukj)I < Cv(h)Ei,2(h). 

Now set Uk,+1 = U'k.i+1/ IIUk.i+1IIB. Combining (5.12), (5.13), and (5.15), we obtain 

IIUkj+1 - Uhki+1 JIB < IIUkj+1 - Uki+1 JIB + IIUki+1 - Uhki+1 JIB 

= IlIUki+1JIB - 11 + IIUki+l -Uh,ki+1JIB 

< IIuk+1IIB - 11 + 21 uki- Uki+1JIB + IIUki+l - Uh,ki+lIIB 

+ CVEi,2 (h) + CVei,2 (h) + Ci (h)Ei,2 (h) 

< Ci (h) Ei, 2 (h),I 

where Ci(h) < 1 + di v(h), which is (5.4) for j = 2. 
Now consider (5.5a) for j = 2. Using (5.13), (5.14), (5.15) and the fact that the 

U/ satisfy (5.5), we have 

IJUk+1 -Uhki+lIID < IIUk+1 - Uk+ lID + IIUk,+1 -Uhk,+1IID 

- Ak / IIluki+lIB - JI + IIUki+l - Uh,k,+1IID 
< j1IIIuki+1IIB - ii + -I~~ Uhki+1IIB 
< ki /Ilki+111B-1 +ki llki -ki+111B 

+ IIUk,+ - Uh,ki+1IID + IB(ui,+l,Uki)IIIUkiIID 

+ CVEi,2 + CV'i,2 + C7?Ei,2 + CVEi,2 

<Ciqi,2(h), 

which is (5.5a) for j = 2. The proof of (5.5b) is similar. 
Continuing in this manner we get (2.6), (5.4), and (5.5) for j = 1,... ,qi. This 

completes the proof. 5 
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THEOREM 5.2. For i = 1,2, ... there is a function Ci(h) with 

(5.16) C6(h) > 1 - div(h), di > 0 constant, 

such that 

(5.17) (Ah,ki+j-1 - Aki)/Aki > Ci(h)e6,j(h), j = 1 ... ,qi, 

and 

(5.18) IIUh,ki+j-1 - Uki+jp1 IB > Cd(h)ei,j(h), j = 1,... ,qi. 

Proof. First consider (5.18) for j = 1. It is immediate that 

UEM(Aki) XESh 

IIUIIB=1 

Thus for j = 1, (5.18) holds with Ci(h) = 1. 
Now suppose j = 2. Since 

B(u',+1, Uh,ki) = B(u',+1, Eh(Aki )Uh,ki) 

- B(Eh(Akki)U +lUh,ki) = B(Uh,ki+1,Uh,ki) = O0 

we see that 

IIUh,kj+1 - Uki+1IIB > inf inf IJU - XIIB = 6i,2(h) 
UEM(Aki) XESh 

IIUIIB=l 
B(U,Uhki )=O 

Combining this result with (5.13) and (5.15), we get 

IIUh,ki+1 - Uk,+1 IB 

? II|-'hk,+1 - Uki+1IIB- -JU +1IIB - IIUk+1 - Uk+1IJIB 

? IIUh,k,+1 - Uki+lIIB - 21lu4i+l - Uki+1IIB - IIIUki+1IIB - 11 

> (1 -div)6i,2(h), 

which is (5.18) for j = 2. Continuing in this manner, we get (5.18) for j = 1,. *, qi. 
Now consider (5.17). From Lemma 3.1, (5.5a), and (5.18) we see that 

(Ah,k,+j-1 - Aki)/Aki - IIUhki+j-1 - Uki+j-1 D 
Ak, IIUh,k,+j-1 112 

IIUh,ki+j-1 - Uk,+j-1IID 

J|Uh,ki +j-1 11D 
Ahki+j-1 ((1 - dv)2 - AkCi, )6 > 

ki 
-Ai i 

which implies (5.17). o 
Remark 5.2. Note that in Theorems 5.1 and 5.2 we have shown that 

(Ah,ki+ j-1 -Aki)/Aki _ 1 < div(h), 

whereas in Theorems 4.1 and 4.2 we showed that 

(Ah, - Akj)/Ak j -1 < di q12(h), 
11 (I - Ph)E(Ak, )uh,j 112 /IIE(Ak, )uh,j 112 



EIGENVALUES AND EIGENVECTORS OF SELFADJOINT PROBLEMS 297 

and 
(hj-Ai/k (ndh| Il(-Ph) A~)/A 1 < di r2(h), 

for u E M(Ak,) with Eh(Aki)U = Uh,j. 

Remark 5.3. For a computational illustration of the results in this section see 

[3], [4]. 
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